Necessary and Sufficient Conditions for Stability of Volterra Integro-dynamic Equation on Time Scales

نویسنده

  • Youssef N. Raffoul
چکیده

(2) x∆(t) = G(t, x(s); 0 ≤ s ≤ t) := G(t, x(·)) on a time scale T that is unbounded above with 0 ∈ T, where x ∈ R andG : [0,∞)T× R 7→ R is a is rd-continuous function in t and x with G(t, 0) = 0. Throughout this paper, for each continuous function φ : [0, t0]T 7→ R there exists at least one continuous function x(t) = x(t, t0, φ) on an interval [t0, a]T such that it satisfies (2) for t ∈ [t0, a]T and x(t, t0, φ) = φ(t) for t ∈ [0, t0]T. For the existence and extendibility of solutions of (2) we refer the reader to [6] and to [14] for Volterra integral equations on time scales. When T = R, we refer the reader to [19], and [18] for results concerning boundedness of solutions of functional differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation

We consider the system of Volterra integro-dynamic equations x(t) = A(t)x(t) + ∫ t t0 B(t, s)x(s)∆s and obtain necessary and sufficient conditions for the uniform stability of the zero solution employing the resolvent equation coupled with the variation of parameters formula. The resolvent equation that we use for the study of stability will have to be developed since it is unknown for time sca...

متن کامل

Dynamic Behaviors of an Almost Periodic Volterra Integro Dynamic Equation on Time Scales

This paper is concerned with an almost periodic Volterra integro dynamic equation on time scales. Based on the theory of calculus on time scales, by using differential inequality theory and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system are obtained. Then, by using the properties of almost periodic func...

متن کامل

Function Bounds for Solutions of Volterra Integro Dynamic Equations on Time Scales

Introducing shift operators on time scales we construct the integro-dynamic equation corresponding to the convolution type Volterra differential and difference equations in particular cases T = R and T = Z. Extending the scope of time scale variant of Gronwall’s inequality we determine function bounds for the solutions of the integro dynamic equation.

متن کامل

Permanence and Uniformly Asymptotic Stability of Almost Periodic Positive Solutions for a Dynamic Commensalism Model on Time Scales

In this paper, we study dynamic commensalism model with nonmonotic functional response, density dependent birth rates on time scales and derive sufficient conditions for the permanence. We also establish the existence and uniform asymptotic stability of unique almost periodic positive solution of the model by using Lyapunov functional method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016